Improving Cross-Subject Activity Recognition via Adversarial Learning
نویسندگان
چکیده
منابع مشابه
Cross-domain activity recognition via transfer learning
In activity recognition, one major challenge is how to reduce the labeling effort one needs to make when recognizing a new set of activities. In this paper, we analyze the possibility of transferring knowledge from the available labeled data on a set of existing activities in one domain to help recognize the activities in another different but related domain. We found that such a knowledge tran...
متن کاملCross-language Learning with Adversarial Neural Networks
We address the problem of cross-language adaptation for question-question similarity reranking in community question answering, with the objective to port a system trained on one input language to another input language given labeled training data for the first language and only unlabeled data for the second language. In particular, we propose to use adversarial training of neural networks to l...
متن کاملMultimodal Storytelling via Generative Adversarial Imitation Learning
Deriving event storylines is an effective summarization method to succinctly organize extensive information, which can significantly alleviate the pain of information overload. The critical challenge is the lack of widely recognized definition of storyline metric. Prior studies have developed various approaches based on different assumptions about users’ interests. These works can extract inter...
متن کاملSpeaker-Invariant Training via Adversarial Learning
We propose a novel adversarial multi-task learning scheme, aiming at actively curtailing the inter-talker feature variability while maximizing its senone discriminability so as to enhance the performance of a deep neural network (DNN) based ASR system. We call the scheme speaker-invariant training (SIT). In SIT, a DNN acoustic model and a speaker classifier network are jointly optimized to mini...
متن کاملImproving Heterogeneous Face Recognition with Conditional Adversarial Networks
Heterogeneous face recognition between color image and depth image is a much desired capacity for real world applications where shape information is looked upon as merely involved in gallery. In this paper, we propose a cross-modal deep learning method as an effective and efficient workaround for this challenge. Specifically, we begin with learning two convolutional neural networks (CNNs) to ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2993818